If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5=18x^2
We move all terms to the left:
5-(18x^2)=0
a = -18; b = 0; c = +5;
Δ = b2-4ac
Δ = 02-4·(-18)·5
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*-18}=\frac{0-6\sqrt{10}}{-36} =-\frac{6\sqrt{10}}{-36} =-\frac{\sqrt{10}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*-18}=\frac{0+6\sqrt{10}}{-36} =\frac{6\sqrt{10}}{-36} =\frac{\sqrt{10}}{-6} $
| 17=3y-3 | | 0,5x+7=3 | | 5x3-9x+4=0 | | 12=3v-9 | | ½x+7=3 | | 12x=36x/2 | | 5x+13=9x-3 | | -2x+24=x+9 | | -8+a/8=-9 | | 5n+24-8n=3n-8+2n | | 4/z=12/5 | | u+5/6=2/3 | | 2 = d+23 | | 5(3x+2)-2(2x+8)=38 | | -3=x+8/9 | | 9y-1=4y-25 | | c-7.2=11.7 | | 2(d–5)=42(d–5)=4 | | 1+6+x=-1 | | -4(u+8)=-7u-41 | | 5+14a=9a−55 | | 2(d–5)=4 | | 6n²-18n-24=0 | | -9=3+y/2 | | -4n+11=3 | | (-3)(8-2a)+5(2a-4)=0 | | 3x-31=-2(x+3) | | 2(t-2)=10 | | 7(3x+8)=21x-2 | | 5^(3x-1)-625^(3-x^2)=0 | | 4.8x=1.4x | | 4(2x=1)=5x+3x+9 |